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AXIALLY SYMMETRIC DEFORMATION
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A NON-LINEARLY ELASTIC MATERIALY}
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Approximate elasticity relations are derived for the axially symmetric deformation of a thin shell of revolution made of a non-
linearly elastic material using the three-dimensional equations of the theory of elasticity. The deformations are assumed to be
of the order of a small parameter which is proportional to the square root of the dimensionless thickness of the shell. Terms of
the second order of smallness with respect to the deformations are retained in the elasticity relations, as a result of which the
equations obtained have an error of the order of the dimensionless thickness of the shell, which is customary in the linear theory
of shells. The Kirchhoff~-Love hypotheses are satisfied only in the first approximation. The axial compression of a shell, assuming
that onc of the extreme parallels can freely slide along a plane of support, which is perpendicular to the axis of revolution, is
considered as an example. A formula is obtained for the limiting load, which physically and geometrically takes account of non-
linear effects in the first approximation. © 1997 Elsevier Science Ltd. All rights reserved.

1. THE METRIC OF THE DISTORTED SHELL

Suppose that, prior to deformation, the median surface of a shell of revolution is described by the
relations (Fig. 1)

ro=ry(5) O =86p(sp), 1 =cos8, (1.1)

Here s, is the length of the arc of the generatrix, ry is the distance to the axis of revolution, 6, is the
angle between the normal to the median surface and the axis of rotation, and a prime denotes differen-
tiation with respect to s;.

Prior to deformation, the principal radii of curvature of the median surface are determined by the
expressions

——=00, _—s— (12)

After deformation, we will denote the same quantities by s, r, 8, R;, R,, respectively, and formulae
analogous to (1.1) and (1.2) hold.

Stretching deformations of an element of the median surface g;, €, and the changes in its curvature
%1, %, have the form

g =5 -1, £2=L—l, r'=(1+¢;)cosO

1 1 9’ ] 1 1 _sin@ sinB, (13)
Rz Rzo r ro

Prior to deformation, we introduce a (material) orthogonal system of curvilinear coordinates g, =
S0, 42 = @, g3 = z, where @ is the angle in the peripheral direction and z is the distance to the median
surface. The square of the distance between infinitely close points is equal to

(dR°)? = H2dg? = gldqdg;, H,=1-28,, H,=r -zsin8;, H;=1 (1.4)
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Fig. 1.

where H; are Lamé coefficients and gf} are the covariant components of the metric tensor prior to
deformation.

In order to describe the position of a point (so, @, z) after deformation we will use a moving
Cartesian system of coordinates with the unit vectors iy, i,, iy connected with the deformed median surface
(Fig. 2). After deformation, the point (so, ¢, 0) transfers to the origin of coordinates while, after
deformation, the position of the point (5o, ¢, z) is described by the vector

R=R*°+R', R!'=iu+iy(z+w) 1.5)

The functions u(sg, z) and w(sg, z) describe the shear strain and the elongation of a normal to the
median surface, respectively. In the case when the Kirchhoff-Love hypothesis is assumed, u(sy, z) =
w(sg, 2) = 0.

After deformation, the covariant components of the metric tensor g; = R;R;, where R; = dR/dq. The
formulae dRy/dg; = l'"‘,ij hold, and it is convenient to use these to calculate the Christoffel symbols l"fj

The components €; of the Cauchy—Green strain tensor E are found using the formulae

g; -8 =2HHz, (1.6)

In the case of axisymmetrical deformation, €,; = €;,3 = 0.

Expansions of the quantities g; and Ff} in power series with respect to a small parameter 1, which is
proportional to the square root of the reduced thickness of the shell, are required below. Here, we shall
assume that, in the case of the deformed state of the shell being considered, the estimates

z~p? {gngd -1 g3 ~p, w-p', w-pt

d _y
a";; y={€,’98ij191u’w} (17)
dy h?

Y 4
=~ T = e,1 ’ [y =y
o Tz TRk WS RaTOR

hold, where # is the thickness of the shell, R is its characteristic size and v is Poisson’s ratio.
In the formulae presented below the auxiliary parameter py = 1 fixes the order of the terms: terms
with a factor i are of the order of p* (only non-zero quantities are given)

€ = HolE, +70 )+ U2 (g, +20")2 12+ wh —z0,) + O(p*)

€13 = Ha(u, + W)/ 2+0(p)

(1.8)
€27 = Mo€y +HA(E3 12+ 20))+ O(n*), 3 =(sin®-sinBy)/ 1

€33 = How, +How; / 2+0(n’)
T =€ +20""+OW), T} =—pg'0'+0(1)
Ty =pg'e’ +0(1), T} =w, +O() (1.9)
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Th, = —ry(r +1€y) +O(R), T3, = —rysin@+O(R)

i =u, +O(W), T3 =pg'w, +0Q)

We now introduce the notation

R
Kk, = —mi=, Y. =k, (1.10)
] r"’gﬁ J §
Then
Vi =1+ O@Y), Y3 =piw +0@?), 13 =niu, +0W*) (1.11)

2. EQUILIBRIUM EQUATIONS AND ELASTICITY RELATIONS

The equilibrium equations are written in the form [1, 2]

o » »

B Lot +F =0, 0% =V—Si_ fao—YT__
+Tjo +F =0, o;=V , F = 21)
3g; J YUUHH; T H(+E))

(v=HtH;, E;=\T+2¢; -1

where

S;1+E;)) . S

ijz_ig."_‘_lloij' %=J(1+2£22)(1+2€33)—8§3 (123) 22)

Here, o; = o;k; are the actual stresses in the body after deformation, 6} are the components of the
stress energy tensor and F = F}‘lclilis the intensity of the external load per unit volume prior to deforma-
tion, which is distributed throughout the volume.

In the case of axisymmetrical deformation of a shell of revolution, one of the equations of (2.1) is
identically satisfied.

The boundary conditions on the lateral surfaces have the form

o3 =p" = pik; + pik;, 03=0yk; +033k; when z=2hy(hy =h/2) (23)
where p” is the pressure on the lateral surfaces.

By virtue of formulae (2.2), conditions (2.3) give

*
*

o, =—>23—pt i=13 wh =% .
3 S3(1+Ej)p] d when 2 hz (24)

The shells material is assumed to be elastic and isotropic. Suppose that the potential ®(1, I, I) is
known as a function of the invariants of the strain tensor E and these invariants are taken as

l] = €,~,-, 12 = e,‘jEﬁ, 13 = Eijejksk,- (2.5)

Then

.20 2001 303 20

O;=—="——+ + = A0 + A€ + A€, €, 2.6
973, ol oe; ddk; ol ag U TUTURH (2:6)

where §; is the Kronecker delta and 4; = k0®/dl (k =1, 2, 3).
In the case of the five-constant theory of elasticity
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we obtain
Al = ”l +3(X.11,2 +a212, A2 = ZG+2(1211. A3 = 3(13 (2.8)

The potential (2.7) gives the general form of the quadratic dependence of the stresses on the strains.
When o, = oy = a3 = 0, formulae (2.6) give Hooke’s law.

Suppose that the third-order elastic moduli ¢ in (2.7) do not exceed Young’s modulus E in order of
magnitude. The stresses are divided by E and expanded in series in powers of j. Terms of the order of
p and p? are retained.

Formulae (2.6) give
Ol = A+ Ae; +3a5(e]; +e5), j=13
) (2.9)
O3 =€13(Ay +303(€); +€33)), Oy = A + Ay, +30,585,
By virtue of (1.8) and (2.8), we find
Ay = PoME +8y +20"+w, ) + U [A((€, +20")2 / 2+ w8’ ~20, +€2 1 2+ ) + w2 /2) +
+30t, (€, +€; - 20" +w, )2 + 0, (g, +20”)? + €2 + w2)]+ O(ER) (2.10)

Ay =2G +200,1(€, +¢&, +20'+w,) + O(Ep?)

The stresses o7 are found as a result of substituting formulae (2.10) and (1.8) into (2.9).

3. ASYMPTOTIC INTEGRATION OF SYSTEM (2.1)

Suppose that the shell is initially solely under the action of a boundary load and that there are no
external forces distributed throughout the volume and over the lateral surface, that is

F=p;=0, j=13 3.1

We integrate Eq. (2.1) with respect to z from -, to h,. In addition, the first of the equations of (2.1) is
multiplied by z and integrated between the same limits. We then obtain three equilibrium “integral” equations

(o) + (Ti01,) + 2T}i053) + (Th0%) +(Tho33) =0, j=13

32
(265, ~(013 ) + (2107 + 223073 ) + (2320, ) + (2l'330%) =0 ©2
((Y) E% 7 de]
-
By virtue of estimates (1.7), formulae (2.10) and (2.9) give
A ~EW, {AyA)~E (3.3)
{011,022,033) = O(EW), a)3 = O(Eu?) (3.4)

We recall that the tilde symbol gives an exact estimate of the order while the symbol O gives an upper
estimate of the order.

A comparison of the orders of the terms in Egs (2.1) and (3.2) enables one to refine estimates (3.4)
and to obtain estimates for the integral quantities in (3.2).

(6) ~ En. {{o})).{013)} ~ En?, {(z0},) ~ Ep’ (3.5)

The discrepancy between the orders of magnitude of the quantities 69; and (6};) is due to the fact
that the mean value of the quantity o, is close to zero.
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The reduction in the order of magnitude of the quantity 03; compared with estimate (3.4) imposes
constraints on the deformation of the shell by virtue of formulae (2.9).
We write the following approximate expressions for ¢

Oy = Mo{M(g; +€; +20'+w,) +2G (g, +28")} + O(En?)
013 = P3G, +w')+ O(En*)
G2 = HolM(g; +€, + 70’ +w,) + 2GE, } + O(Ep?)

63 =HolMeE, +€, +z9’+wz)+20wl}+u?,(k((s, +20") 124w -26, +ei/2+

(.6)
+2 + Wy 1 2)+ Gwl +30,w? +20, (€, + €, + 28" +w, )w, + 30, (€, + &, + 28" +w,)? +
+0, (€ +20°)2 + &2 + wl)} + O(Ep’)
By virtue of the estimates 6%; ~ Ep? and (o%;) ~ E?, in the zeroth approximation we obtain
AMe +€,+20'+w,)+2Gw, =0
(ME, +€, + 20" +w,)+2G(g, +20°)) =0
whence the relations
= 2 * E , 2
€| ——V82 +0(u. ), 0” =_Tze +O(Eu )
1-v
G.7)
= A 2 v 20/ 2
= —-VE€qy = = = e -
w, 2 l_vzﬂ +O(L*), VE,2 2(l_v)z0+0(u )
follow.
The asymptotically principal terms of Eqs (2.1) give
3(%Ty,) . . 901 303 g
- ' oo = 38
35, +rn % O(Eyp) % 6’0y, = O(Ep) (3.8)

Integrating Eqs (3.8) with respect to z and taking account of expression (3.7) for 6, and the boundary
conditions 6%; = of; = 0 when z = +h,, we find

2_ 2 . 2_2
o)y = 2%’-"7;)7)009' Y +O(EWY), o} = _ET((‘H)_)e'Z +O(EW?) (3.9)
o -

By using expression (3.6) for 6%,, we find an expression for w, which is more exact than (3.7). Here,
when calculating terms of the order of u°, we have used the approximate formulae (3.7). We obtain

2
V_ .o
w, = _p,o[vsz +1—_—sz )- x:-l;G {A(g, + vey) + bl +

+2[A(=Bg + %)) + b,€,0" 1+ b,220"% a3, } + O(Ep®)

b = ‘2&* 0,301 - 2)? + 0, (1 - 2v + 6v2 ) + 320, (3.10)

2 _avy2 _ 2
b, = Ev + 6(1-2v) _ 6v(l 2V)+a 6v

- o o
A+v)(1-2v) ' 1-v 2 1-v 3-v
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Ev 3(1-2v)? 1-4v+6v? 3v?
= + 0O
20+ v)(1-2v) ' (1-v)? T (1-v)2 o (1-v)?

b,

It is convenient to find the stresses 6f; and 6%, from the relations

O = Ay(Ey —€33)+303(e}, —€2)+ 05y, k=12 (3.11)
which follow from (2.9).
Substituting formulae (1.8), (2.10), (3.7), (3.9) and (3.10) into (3.11), we obtain
oy B

——— U l 0 ’
g MopT Ttho T2 (&) + Ve + vy — 28 +

13 {by €3 + byy€,207 +b3(267)% + b, 072 (B - 2%)) + O(n)

(.12)
Gy _ vz0’ v :
—E—-uo(ez = )+u§ 7 €1+ VEy + 25~ vaBy )+

UG (b €3 + b€, 28” +b,,(207 )7 +b,,8°% (hE - 22)} + O(®)

where b; are linear functions of the dimensionless quantities a‘} = oy/E (j = 1, 2, 3) with coefficients
which depend on v.

4. TWO-DIMENSIONAL EQUILIBRIUM EQUATIONS

The equilibrium equations of a curvilinear parallelepiped, which (before deformation) occupies the
domain sg, 5g + dsg; @, ¢ + do; —-h, < z < h,, have the form (after deformation) in projections on the
tangent and the normal to the median surface

(7)Y ~T,cos0+10' Q +ryp, =0
(rQ,) ~T,sin@— 10 T, + ryp; =0 4.1)

(roMl )' —M2 Cose— ro(l +£l )Q] + om = 0

where the projections of the forces and the moments T}, Q;, M; have been divided by the unit of length
of the median surface prior to deformation and are determined starting from the formulae

. . Sy y
Till +Ql‘3 =<H2 -Sl—01>hy Mliz =<H2 %‘—Rl X01>h
1 1
(4.2)

. S, . S,
hi, = <H| f"z>h' My, = ‘<H1 S—ZRI X0, >h
2

H)ere, a; = ok are the actual stresses in the body after deformation and the vector R! is given by
1.5).

( In (4.1), p, p3, m; are the projections of the external forces and moments per unit area of the median
surface, before deformation, onto the unit vectors ij.

The system of equations (4.1), taking (4.2) into account, is exact and equivalent to system (3.2) (if
the latter is supplemented with terms which take account of the external load). Inaccuracies arise as
a result of replacing the exact elasticity relations (4.2) and values of ojf by approximate ones.

In order to derive approximate elasticity relations, we project relations (4.2) onto the unit vectors ij,
take account of formulae (2.2), (1.10) and (3.26) and integrate with respect to z in accordance with
3.2).
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Then
T, =u3{K(e, +ve,)+ Eb, kel +a,0"2 ) + O(Ehp?)

T, = WoEhe, + UG {KV(E, + Ve, )+ (E + Ebyy he2 +a,0'2 } + O(Ehp?)

3nard g 0 43)
=N DO’ +ug{ D(-0; + v ) + as€,8’} + O(ER?p?)

M, = U3 DVO’ +1d (D2 — 8, )+ a,€,0'} + O(ER??)

where

Eh Eh® E(b; +2b,)R®
K= , D=— 4 =D+ 203 +254)h°
1-v? 2a_vy a=Pb+* 12

(44)

E(by, +2by )R Eb k>
= 23 24 12

3 2
. ay=Ehah _oyp g, = Ebal  (v-3V)D
12 12

12 2

The system of equations (4.1), together with the geometric equation
(r€,) =(1+¢&)cosB —cosh, 4.5)
which follows from formulae (1 3), and relations (4.3) form a close system in the eight unknown functions
T, Mj, €, Oy, ©. This system is of the fifth order and Ty, M, &, Oy, 6 are the pr1nc1pal unknowns in it,

thle the functions T,, M,, €, are expressed in terms of the principal unknowns using (4.3). We now
supplement Eqgs (4.1) and (4.5) with the equation

DO’ = M, + D(8y — vx3) — 2 Dc,£,0’ (4.6)

and the relations
T, = VT, + Eh(e, + c;€3) + Dc,82, €, =-ve,, M, =vM, @.7)
which follow from (4.3). The latter two approximate relations ensure the accuracy, which is required later.
The dependence on the non-linear properties of the material manifests itself solely in terms of the

coefficients ¢; and ¢, which are equal to

1 = %+30)(1-2v)? +3a3(1 - 2v)(1 +2v?) + 303 (1 - 2v°)

(4.8)
1
c; =-2v+ 1"—:[301?(1 -2v)* +ad(1-2v)(1 - 4v+6v?) - 3adv(1 - 2v +2v?)]
The same coefficients occur in the approximate expression for the elastic energy potential
n=[? 21tr0[Eh( > e+ %Ls;) D(% 0’2 +0'(vx ) —0}) +c,e,0" )]dso 4.9)

The relative formal error of the resulting system (4.1), (4.5)~4.7), as well as of expression (4.9), is
of the order of magmtude of pn? or of the order of magnitude of the dimensionless thickness of the shell.
Here, the question is the error in constructing the internal stressed state, and the issue on its interaction
with the boundary layer (see [3]) is not considered.

Remark. Formulae (3.12) were obtained under the assumption (3.1), which includes the statement that the shell

is not loaded. It can be verified that the order of magnitude of the residual terms O() and O(1’) in relations (3.8)
and (3.9) is preserved when

pjf’:()(u), pi=0@?), j=13 (4.10)
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Together with relations (3.8) and (3.9), the terms in formulae (3.12), which have been explicitly written out, also
remain unchanged. As a rule, estimates (4.10) are satisfied because stability loss in the linear approximation occurs
at far smaller loads

F; =0o(?), p}=0*), j=13 (4.11)

Estimates (4.10) are violated if the shell is acted upon by a very large external pressure p§ ~ 12, which is identical
on both sides of the shell. In this case, the quantity w, in (3.13) acquires a constant term and formulae (3.16) and
(4.3) also change. This case is not considered here.

5. THE PROBLEM OF COMPRESSION BY AN AXIAL FORCE

Suppose that a shell is acted upon by an axial force P applied to its ends, that the edge of the shell
sp = &, is clamped in a radial direction and that the edge s = s, can freely slide along a support plane,
which is perpendicular to the axis of revolution. A stressed state, which satisfies estimates (1.7), then
occurs in the neighbourhood of the edge sq = s, when P ~ Eh?.

As the characteristic dimension R of the shell, we take R = ry(s,) and change to dimensionless variables
(with the superscript °) using the formulae

(s0:70) = Riso, '} {€1,€2} =R{eT,€2), {pyp3) = EM*R™(p}, p3)
(5.1)
(T,.0)) = Em*{T,Q0), T,=EhuTy, (M,,M,}=ERRp*{M’, M3}
Substitutions (5.1) are introduced in such a way that the dimensionless quantities are of the order
of magnitude of unity in the neighbourhood of the edge s¢ = s,.

We now transfer to the projections ¥ and U of the internal forces in the axial direction and the direction
perpendicular to it, respectively

T =Ucos@+Vsin®, O =Usin@-Vcos6 (5.2)

The degree sign is henceforth omitted.
The system of equations in the unknowns

V,U,&,M,,6 (53)
then takes the form
(roVY =0
H(rU) =€, +pv(U cos 0+ Vsin0) + pc,e3 + pc,0"
(€, ) = (1—puve,;)cos®—cos, (5.4)

(M) = ry(1-puve, XUsin8 - V cos0) + uvM, cos 0
HO’ = M, + (8 — vx J) - 2u3c,e,0’
The boundary conditions have the form
£ =0, (0 =0y when M, = 0) when 54 =13,
(5.5)

U=M| =0 when S9 =8y

The first of Egs (5.4) gives

c 2 2nER?
V==, P=2nERRp’C= C 5.6
n ;]12(1 -v?) (56)

We will next seek the limiting value of the force P.
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6. ASYMPTOTIC INTEGRATION OF SYSTEM (5.4)
Far from the edges, the shell is deformed and both the zero-moment

_ Ccosb,

0=0,+0(Cn?), M, =0(Cy’), U . € =0(Cp) (6.1)

I sin@,

and the principal deformations are concentrated in the neighbourhood of the edge sq = 5.
We write system (5.4) in vector form

pux’ = F(x, 5o, C, W), x={U, &, My, 8) (6.2)
carry out a scale expansion £ = (s, — s,)/it and seek its solution in the form
x=x*(£) +px' (8)+ O(u?), C=C°+uC'+0u?) (6.3)

The accuracy of system (5.4) enables one to construct the two first terms of series (6.3).
Taking account of the fact that

ro(so) =1+uEcosy+Ou2), Y=0(s,); Bp(sy)="7+MEk +O0M2), k =85(s,)
and equating the coefficients of p° and p' in system (5.4), we obtain in the zeroth approximation
x* = FO=F(x9, 5,, C?, 0) (64)
or (see also [4, 5])
U%=¢3, &) =cos8®-cosy
MP =U%sin@° - C%cos@®, 0% =M} (6.5)

(a dot denotes a derivative with respect to £) and in the first approximation

x! =LE)x! +g, L=%F:—, g=-§£— +:?F0C'+%E-u (6.6)
or
U'=¢)+g, é’2=—0'sin9°+g2
M} =U"sin8° +(U° cos @’ +C%in0%)0' +g;, ' =M +g, 6.7)
where

g =-EU°cosy + U®(vcos8® —cosy) + vCsin8° + clegz + csz’2
g, =—E€Jcosy —€2(vcos8® +cosy)+kEsiny
g = —veg(U0 sin8° ~ €% cos8°) - C' cos 0% + EC® cos@® cosy + M? (vcos8® —cosy) (6.8)
84 = ky — v(sin®° —siny) - 2czegM|°
The partial derivatives in expression (6.6) for g = {g,, 2,, g3, g4} are calculated for the same values of
the arguments as in (6.4).

When s < 5;, the solution of system (5.4) changes into the zero-moment solution (6.1) which gives
the boundary conditions when § — — .

_C%cosy
siny

u® , €9=MP =0, 6°=y when £ —c0 (6.9)
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- C'cosy a C®(kEsiny +cos y)

U , €=M =0, 8'=k 6.10
siny sin®y L 15 (6.10)

The boundary conditions (5.5) give
U=M) =0, U'=M] =0 when £=0 (6.11)

7. CALCULATION OF THE AXIAL FORCE
System (6.5) has the integral [4]

£g2 - Mloz ~2U°(c0s8° - cos ) - 2C°(sin8° —siny) =0 (7.1)

in which the arbitrary constant is found by virtue of conditions (6.9). The “shooting” method is used
in the numerical solution of the zeroth approximation boundary-value problem (6.5), (6.9), (6.11). The
initial conditions

U=M?=0, 8°=1, €J=1, when £=0 (72)

are specified.
It is assumed that the parameter 7 is specified, and 1, is found from relation (7.1)

1, =4/2C°(sinT—siny) sign(r /2 - ) (7.3)

The constant C? is selected from conditions (6.9) and, for these conditions to be satisfied, it is sufficient
to require that

“x"(g) - x°(—-oo)|| —0 when &— —oo, |x|= (x,2+...+x3 )% (74)

If relation (7.4) is satisfied, then C° = C%(1), x° = x*(&, 1). The value of C°, which corresponds to the
limit point in the zeroth approximation, is found from the condition

dC%dt =0 (7.5)
The value of C! is found from the condition
* * * ]
ﬁ... (818, —8U +8:0 —g4M )5 =0 (7.6)

for the existence of a solution x' of system (6.7) which satisfies boundary conditions (6.10) and
(6.11). Here, x* = {U*, €3, M?%, 06*} satisfies the system x* = L(§)x* and the null boundary conditions
(x*(—e2) = U*(0) = M*((0) = 0).

When conditions (7.4) are satisfied, we have

x* = ax%/ot (1.7

which enables us to express C' from (7.6) solely in terms of the zeroth approximation x’.
After some reduction, we obtain

C' = fo+ fky + £,V + fiot + f,00 + fiy (7.8)
where
L _ o si yoi
f0=‘ll2"2, fk=13’ fv='_12__";_‘]5

31+ v)(1=-2v)* |
—_—
l-v

fi==2v)}j, +
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1+ v)(1=2v)(1- 4V +6v?) j (7.9)
4

=(1- 2y;
f=1=-2v)(1+2v%)j, + Ty

3v(1+v)(1-2v+2v?)
- Ja

=(1-2vY)j
f3 ( )12 v

ji =Jl/J0’ i=1,...,5

and the values of J; depend solely on the angle y and are determined in the course of the numerical
integration of system (6.5) using the formulae

Jo= % [° (sin®° —siny)dE, J, = cosy% [E(M)? - (e3)*)dE
Jy = %Ji’,, (e9)°dE, Jy=—1-sin y% LU E)-U° ()l
J, =%f"eg(M,°)2d§, Js =sint—siny (7.10)

The value of C° and the coefficients in formulae (7.8) and (7.9) are presented below for different
values of ¥

T, degree 5 10 20 30 45 60 70 80 85
cx10t 30 -121 481 1078 2402  -4221 5704 -7439  -8460
fyx10* 45 124 307 439 336 -323  -1070 -1868  -2069
fix10* 4330 6104 8554 10362 12330 13637 14192 14741 15654
f,x 10 131 366 1007 1751 2807 3430 3376 2718 2024
Jpx 108 ] -6 65 -260 989 2374  -3563 4562 4570
Jax 104 0 -1 -6 24 -85 -172 211 -183 -119

The case when ¥ > =/2 reduces to the substitution > = & — y and, moreover, it turns out that

C(m-v)=c%0), C'(x-1)=-C'(y) (7.11)
When 7 < 1, the substitutions
(U°,0°) = y{U*,0%), (M{,ed) =% (M} e3), E=y7%E*, O =v2C* (7.12)
reduce system (6.4) to a form which does not contain vy (see [5])
U 1 de*
@200 Famerue-ce

(7.13)
6*—>1, U*—> C* when £* - —o

U*=0, M =0 when §*=0
When y < 1, for the coefficients presented above we have the approximate equalities
U Y=Y 1) =280 Undad =120 00 (7.14)
The limit value of the quantity C* and the numerical values of the coefficients with an asterisk are
C* = 03963, f = 0.1768, f} = 1.4602, f% = 0.5092, j% = —0.2652, j% = —0.0268.

It follows from (7.14) that the contribution from the physically non-linear terms (with the factors ¢,
and c; in (5.4)) is reduced for shallow shells.
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8. DISCUSSION OF THE RESULTS

The problem of constructing a linear two-dimensional theory of thin shells starting from the three-
dimensional theory of elasticity has been considered in many papers (see [3, 6]).

The approximate elasticity relations (4.3) for the axisymmetrical deformation of a non-linearly elastic
shell of a revolution have been obtained here using the three-dimensional theory. Relations (1.7), which
are based on an assumption regarding the order of magnitude of the strains g; = O(u), are the basis
of the derivation. Relations (1.7) have been obtained previously [4, 5] in the case of large supercritical
displacements of shells of revolution. The strains €; = O(l) are relatively large since, for example, the
subcritical strains accompanying the loss of stability of a cylindrical shell during axial compression are
of a much lower order of magnitude ¢; = O(1%). Hence, if we wish to obtain the two-dimensional
equations with an error of the order of u?, or of the order of 4/R in the case of the strains being
considered, it is necessary to take account of the non-linear dependence of the stresses on the strains.

The non-linear elasticity relations (4.3), which have an error of the order of p? when g; = O()), have
been obtained above for the five-constant elastic material (2.7) under the assumption that o; = O(E).
In the case of strains of the same order of y, relations (4.3) also hold for an arbitrary non-linearly elastic
material under the assumption that coefficients of the fourth and higher orders in expansion (2.7) of
the elastic potential ® in series in the invariants 7; do not substantially exceed E.

In the case of large distortions (of the order of unity), no rigorous derivation of the elasticity relations
for shells from the three-dimensional equations of the theory of elasticity can be found in the literature.
Elasticity relations are available (see [7, 8], etc.) which have been obtained using the Kirchhoff-Love
hypothesis. In the case of small deformations (of the order of ), a comparison with formulae (4.3)
reveals a difference in the non-linear terms.

System (5.4), when ¢; = ¢, = 0, has been investigated in [4, 5, 9] using the method of asymptotic
integration. A problem of large axisymmetrical supercritical deformations of a shell by an external
pressure has been considered in [4, 5]. Here, the shape of a part of the median surface is close to the
initial shape while the other part is close to that obtained by a mirror reflection from a plane perpen-
dicular to the axis of revolution. A system, which is equivalent to (6.5) when C? = 0, has been obtained
in the zeroth approximation [4, 5]. This system corresponds to a sharp decrease in the load at supercritical
deformations. The relation between the load and the flexure has been found in [4] during a treatment
of the first approximation and also in [5] by a variational method which uses the solution of the zeroth
approximation as a coordinate function. The same results has been obtained previously [10] by a
geometric method, which turns out to be equivalent to the method of the asymptotic integration
of system (5.4) when constructing the internal boundary layer. The dependence C’(y), which is presented
at the end of Section 7, was obtained in [9].

Systems of non-linear equations of the type of (4.1) for the axisymmetrical deformation of shells of
revolution have been considered in many papers ([11-13], etc). In [12, 13] and a number of other papers,
it is recommended “with the aim of refinement” that the forces and moments should be divided by the
unit of length of the median surface after deformation. This is quite possible if the elasticity relations
are changed simultaneously. If, however, the same elasticity relations are used, then, as was shown in
[7], a system is obtained to which no elastic energy corresponds. In the case of the problem on the limit
load under axial compression, which is being considered here, the equations from the above-mentioned
papers enable one to determine the value of C° in (6.3) correctly and should give an erroneous value
of the correction C’. It is interesting to note that the problem considered in [4, 5] concerning supercritical
deformations, associated with a mirror reflection, imposes higher than usual requirements on the initial
system. Calculations showed that the use of the system from [12, 13] does not allow one to determine
even the leading term in the expression for the axial force correctly.

The limit value of the force P has been found above. Bifurcation into a non-axisymmetrical form of
equilibrium may precede the limit load. In particular, this will always be so in the case of shells which
have segments with a negative Gaussian curvature, because, in the case of bifurcation P = O(ER* ™)
for such shells (see [14]). The solution of system (5.4) can be used to solve the bifurcation problem.

This research was supported financially by the Russian Foundation for Basic Research (96-01-00411),
the International Science Foundation and the Russian Government (NW5300).
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