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Approximate elasticity relations are derived for the axially symmetric deformation of a thin shell of revolution made of a non- 
linearly elastic material using the three-dimensional equations of the theory of elasticity. The deformations are assumed to be 
of the order of a small parameter which is proportional to the square root of the dimensionless thickness of the shell. Rxms of 
the second order of smalhtess with respect to the deformations are retained in the elasticity relations, as a result of which the 
equations obtained have an error of the order of the dimensionless thickness of the shell, which is customary in the linear theory 
of shells. The Kirchhoff-Lwe hypotheses are satisfied only in the first approximation. The axial compression of a shell, assuming 
that one of the extreme parallels can freely slide along a plane of support, which is perpendicular to the axis of revolution, is 
considered as an example. A formula is obtained for the limiting load, which physically and geometrically takes account of non- 
linear effects in the first approximation. 0 1997 Elsevier Science Ltd. All rights reserved. 

1. THE METRIC OF THE DISTORTED SHELL 

Suppose that, prior to deformation, the median surface of a shell of revolution is described by the 
relations (Fig. 1) 

r. = b(so), Cl0 = eo(so), r. = codlo U-1) 

Here so is the length of the arc of the generatrix, r. is the distance to the axis of revolution, e. is the 
angle between the normal to the median surface and the axis of rotation, and a prime denotes differen- 
tiation with respect to sa. 

Prior to deformation, the principal radii of curvature of the median surface are determined by the 
expressions 

l ’ 1- 0 sin 8 -= 
40 

e0* 
R20 r, 

(l-2) 

After deformation, we will denote the same quantities by s, r, 8, RI, RZ, respectively, and formulae 
analogous to (1.1) and (1.2) hold. 

Stretching deformations of an element of the median surface Ed, &2 and the changes in its curvature 
x1, xz have the form 

El =s’-1. E2 =i-1, r’=(l+&~)cose 
‘0 

1 1 8’ ’ 1 1 sin0 
“‘=R,-R,, 

=--eo, x2=---=r- sine0 
I+&, R2 40 ‘0 

(1.3) 

Prior to deformation, we introduce a (material) orthogonal system of curvilinear coordinates q1 = 

so, q2 = cp9 q3 = z, where cp is the angle in the peripheral direction and z is the distance to the median 
surface. The square of the distance between infinitely close points is equal to 

(dRO)*=H,?&+g;dqidqi, H,=l-&I;, H2=ro-zsin80. H,=l (1.4) 
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Fig. 1. Fig. 2. 

where H;: are Lame coefficients and gi are the covariant components of the metric tensor prior to 
deformation. 

In order to describe the position of a point (se, cp, z) after deformation we will use a moving 
Cartesian system of coordinates with the unit vectors ir, iz, is connected with the deformed median surface 
(Fig. 2). After deformation, the point (se, (9, 0) transfers to the origin of coordinates while, after 
deformation, the position of the point (se, cp, z) is described by the vector 

R=R’+R’, R’ =i,u+i3(z+w) (1.5) 

The functions U(Q, z) and w(ss, z) describe the shear strain and the elongation of a normal to the 
median surface, respectively. In the case when the Kirchhoff-Love hypothesis is assumed, u(ss, z) = 
w(so, z) = 0. 

After deformation the covariant components of the metric tensor gii = R&, where Rt = JR/&I. The 
formulae dR&qj = l$Rk hold, and it is convenient to use these to calculate the Christoffel symbols I$. 

The components qj of the Cauchy-Green strain tensor E are found using the formulae 

gii-g~=2HiHjEU (1.6) 

In the case of axisymmetrical deformation, ~~2 = ~23 = 0. 
Expansions of the quantities Q and Ii in power series with respect to a small parameter CL, which is 

proportional to the square root of the reduced thickness of the shell, are required below. Here, we shall 
assume that, in the case of the deformed state of the shell being considered, the estimates 

Z-~29 (Ei*Eji)-~* &,3-k21 w-P39 u-l'4 

(1.7) 

2L.L y=(Eii.u,w}, p4= h2 
a2 I?' 12(1- v2)R2 

hold, where h is the thickness of the shell, R is its characteristic size and v is Poisson’s ratio. 
In the formulae presented below the auxiliary parameter h = 1 fixes the order of the terms: terms 

with a factor & are of the order of uk (only non-zero quantities are given) 

&,,=p&,+ze')+p~ (E,+Ze')2/2+ww-ze~)+o(p3) 

&,3=CL~(u,+w')/2+O(CL3) 

E22=pOE2+p~(E~/2+~~~)+O(p3), xi=(sin8-sinOa)/re 
(1.8) 

&33 = pow, + piwf / 2 + O(p3) 

I$ = E; + ze”+o(p), r:, = -&3’+0(1) 

I-;, = p;le'+o(i), r:, = W; + o(p) (l-9) 
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I& =-rc(r~+res;)+O(u), I$ =-rosinO+O(u) 

r:, = u, + O(cL). r:J = pi’wu + O(1) 

We now introduce the notation 
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Then 

yii = 1+ O(p4), y,3 = p;w’+o(P3)9 Y31 = cl;% + O(P3) 

2. EQUILIBRIUM EQUATIONS AND ELASTICITY RELATIONS 

The equilibrium equations are written in the form [l, 21 

ad. of. 
A+rib;k+q: =o, pi =v-/--, 

VFi’ 

hi HiHj 
q= 

Hj(l+ Ej) 

(1.10) 

(1.11) 

(2-l) 

( V=H,H,H,, Ej =Jizql) 

where 

ujj = 
Si<l+Ej) 

s,: 
o;, ~=r/(l+za,)(l+zP,,)-~~ (12 3) (2.2) 

Here, oi = CT& are the actual stresses in the body after deformation, a: are the components of the 
stress energy tensor and F = J’T 

x 
. is the intensity of the external load per unit volume prior to deforma- 

tion, which is distributed throug out the volume. 
In the case of axisymmetrical deformation of a shell of revolution, one of the equations of (2.1) is 

identically satisfied. 
The boundary conditions on the lateral surfaces have the form 

u3 = pf I p:k, + p;k,, a3 =ojlkl +a,k, when z=fb(b =h/2) (2.3) 

where pf is the pressure on the lateral surfaces. 
By virtue of formulae (2.2), conditions (2.3) give 

Uij = s; s cI+E.lpf, j=1,3 when z=fb 
3 I 

(2.4) 

The shells material is assumed to be elastic and isotropic. Suppose that the potential @(II, Iz, IS) is 
known as a function of the invariants of the strain tensor E and these invariants are taken as 

11 = &ii, 12 = &ij&ji v 13 = &ij&jk&ki (2.5) 

Then 

where 5, is the Kronecker delta and& = &I@~ (k = 1, 2,3). 
In the case of the five-constant theory of elasticity 

(2.6) 

(2.7) 
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we obtain 
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A, =ti, +3~%,If+a,l,, A2 =2G+2a,f,, A3 =3a, (2.8) 

The potential (2.7) gives the general form of the quadratic dependence of the stresses on the strains. 
When al= or, = a3 = 0, formulae (2.6) give Hooke’s law. 

Suppose that the third-order elastic moduli q in (2.7) do not exceed Young’s modulus E in order of 
magnitude. The stresses are divided by E and expanded in series in powers of p. Terms of the order of 
p and $ are retained. 

Formulae (2.6) give 

0;s =%(A2 +3a3(ql +E~~)), 
cw 

ai2 = A, +A+, +3a,& 

By virtue of (1.8) and (2.8) we find 

A, =P&(E, +~~+zW+w,)+p;[h((q +ze’)* /2+we’-z$,+E; /2+m; +w; /2)+ 

+3a,(~,+~2-~+w,)2+a2((~,+~')2+~~+~,2)]+O(E~3) (2.10) 

A2 =2G+2a2p&, +E~+zW+W,)+O(E~*) 

The stresses o$ are found as a result of substituting formulae (2.10) and (1.8) into (2.9). 

3. ASYMPTOTIC INTEGRATION OF SYSTEM (2.1) 

Suppose that the shell is initially solely under the action of a boundary load and that there are no 
external forces distributed throughout the volume and over the lateral surface, that is 

F,’ = p; = 0, j = 1.3 (3.1) 

We integrate Eq. (2.1) with respect to z from -hz to hz. In addition, the first of the equations of (2.1) is 
multiplied by z and integrated between the same limits. We then obtain three equilibrium “integral” equations 

(U;j)+(r,‘,U~,)+;I(r~3U~3>+(r~2U”,2)+(r~3U;3)=0. i=1,3 
(3.2) 

By virtue of estimates (1.7), formulae (2.10) and (2.9) give 

A, - EIL tA2.A31 - E (3.3) 

I~;,,~&,o;3l=O(E~X 0;3 =O(Ep*) (3.4) 

We recall that the tilde symbol gives an exact estimate of the order while the symbol 0 gives an upper 
estimate of the order. 

A comparison of the orders of the terms in Eqs (2.1) and (3.2) enables one to refine estimates (3.4) 
and to obtain estimates for the integral quantities in (3.2). 

(d;2) - EP, {(a;,>,(~;~)} - Ep2, (~a;,)- Ep3 (3.5) 

The discrepancy between the orders of magnitude of the quantities a”ii and (cr&) is due to the fact 
that the mean value of the quantity &ii is close to zero. 
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The reduction in the order of magnitude of the quantity ~$3 compared with estimate (3.4) imposes 
constraints on the deformation of the shell by virtue of formulae (2.9). 

We write the following approximate expressions for a$ 

o;, =P~(X(E, +E~ +zW+w,)+2G(q +te’)}+O(l$*) 

a;, =p;G(u, +w’)+O(Ep3) 

a;, =p,(l(e, +e2 +243’+w,)+2G~,}+0(Q~*) 

a;, =pO(k(E, +E2 +29’+~,)+2Gw,)+~;(5((e, +d’)2 /2+w&&,+E; /2+ 
(3.6) 

+a,((E, +ze’)*+E;+W:)}+O(E$) 

By virtue of the estimates && - Ep* and (@ii) - Ep*, in the zeroth approximation we obtain 

whence the relations 

A(E, +E* +#+w,)+2Gw, =o 

(h(E, +E2 +&J’+w,)+2G(E, +a’))=0 

El =-“E2 +O(P*h a;, =+W+o(~p*) 

Wz = -VE2 W = -VE2z 
V 

--z%+o(p*) 
2(1-v) 

follow. 
The asymptotically principal terms of Eqs (2.1) give 

%i+J;, 1 t -+r,~=wP). 
as0 

*-wa;, = O(Ep) 
a2 

(3.7) 

(3.8) 

Integrating Eqs (3.8) with respect toz and taking account of expression (3.7) for o& and the boundary 
conditions at = ~$3 = 0 when z = kh2, we find 

a:, =,g$ (roe’)‘+O(Ep3), a;, = - *-z2) 2 
Tfk7-y 8’ +O(Q13) 

0 
(3-9) 

By using expression (3.6) for afs, we find an expression for w, which is more exact than (3.7). Here, 
when calculating terms of the order of p.‘, we have used the approximate formulae (3.7). We obtain 

+vZe l-v -&(X(E, +VE2)+qE; + 

+Z[X(-e; + X;) + qE,8’] + b$*8’* -a;,) + o(m3) 

4= lib 
2(1- 2v) 

+ al 3(1- 2~)’ + a,(1 - 2v + 6v*)+ 3v*a, (3.10) 

b2 =- 
lib* 6(1-2~)’ -a 6~(1--2v)+~ 

(1+v)(I-2v)+a’ l-v * l-v 
~ 

3l-v 
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b3 = Ev +a 3(1-2~)~ +o( 1-4v+6v2 3v2 
2(1+ v)(l - 2v) ’ (l-v)2 2 (l-v)2 +a3tl-V)2 

It is convenient to find the stresses a& and oi2 from the relations 

0; =A2(&~--~j)+3a3(~~-~:1)+~;3r k=1,2 

which follow from (2.9). 
Substituting formulae (l.g), (2.10), (3.7), (3.9) and (3.10) into (3.11), we obtain 

4, ze 1 -= 
E PO ,r+d *-vJ (&I +VEZ +vz&&o)+ 

+p&,e; + b,2e2zW+b,3(z9’)2 + b,&Y2 (g -z’)) + O(p3) 

(3.11) 

(3.12) 

+d W: + b22”2ze’+b23(ze’>2 + b,W2 (g - z2 )} + o(p3) 

where bii are linear functions of the dimensionless quantities a! = q/E 0’ = 1,2, 3) with coefficients 
which depend on v. 

4. TWO-DIMENSIONAL EQUILIBRIUM EQUATIONS 

The equilibrium equations of a curvilinear parallelepiped, which (before deformation) occupies the 
domain so, so + dso; cp, (p + dcp; 412 G z =z hZ, have the form (after deformation) in projections on the 
tangent and the normal to the median surface 

(r,T,)‘-T2cose+roWQ, +rop, =0 

( roQ )’ -T2 sin 0 - roe T, + rop3 = 0 (4.1) 

(roM,)‘-M2cos8-ro(l+&1)Q, +rom, =0 

where the projections of the forces and the moments Tj, Qi, Mi have been divided by the unit of length 
of the median surface prior to deformation and are determined starting from the formulae 

T,i, + Qli3 =(If2$rl)h. M,i, =(H,$R’xo,)h 

(4.2) 

Here, ai = 
(1.5). 

o& are the actual stresses in the body after deformation and the vector R’ is given by 

In (4.1),p1,ps, )tll are the projections of the external forces and moments per unit area of the median 
surface, before deformation, onto the unit vectors 4. 

The system of equations (4.1), taking (4.2) into account, is exact and equivalent to system (3.2) (if 
the latter is supplemented with terms which take account of the external load). Inaccuracies arise as 
a result of replacing the exact elasticity relations (4.2) and values of o; by approximate ones. 

In order to derive approximate elasticity relations, we project relations (4.2) onto the unit vectors is, 
take account of formulae (2.2), (1.10) and (3.26) and integrate with respect to t in accordance wrt 4 
(3.2). 
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Then 

(4.3) 

where 

K=Eh D= Eh3 
l-v*’ a,=D+ W3 +%)h3 

12(1-v’)’ 12 

(4.4 

%I= 
E&3 + 4 W3 Eb,,h3 

’ a3- 12 
Eb2,h3 

12 
---2vD, a, =-•+ 

(v - 3i*)D 
12 2 

The system of equations (4.1), together with the geometric equation 

(T~E~)'=(~+E,)cos~-~cos~~ (4.5) 
which follows from formulae (1.3), and relations (4.3) form a close system in the eight unknown functions 
Tj, Mj, Ej, Qi, 0. This system is of the fifth order and T,, Mi, ~2, Qt, 8 are the principal unknowns in it, 
while the functions T2, M2, e1 are expressed in terms of the principal unknowns using (4.3). We now 
supplement Eqs (4.1) and (4.5) with the equation 

De’= M, + o<e; -WC;) - 2DC2E28’ (4.6) 

and the relations 

T, = VT, + Eh(e, +c&+ DC,8 r2 , &I =-v&Z. M*=vM, (4.7) 

which follow from (4.3). The latter two approximate relations ensure the accuracy, which is required later. 
The dependence on the non-linear properties of the material manifests itself solely in terms of the 

coefficients cl and c2 which are equal to 

cl =J$+3a~(l-2v)3+3a~( l-2v)(l+2v2)+3ai(l-2v3) 
(4.8) 

c2 =-2v+~[3a~(l-2v)3+a~(l-2v)(l-4v+6v2)-3a~v(l-2v+2v2)] 

The same coefficients occur in the approximate expression for the elastic energy potential 

l-I = Is7 215 Eh Z~2 + [ (1 * e’* +w(vx,O -e;,)+c,&,e'* 
)I 

ho (4.9) 

The relative formal error of the resulting system (4.1), (4.5)-(4.7), as well as of expression (4.9), is 
of the order of magnitude of l.t2 or of the order of magnitude of the dimensionless thickness of the shell. 
Here, the question is the error in constructing the internal stressed state, and the issue on its interaction 
with the boundary layer (see [3]) is not considered. 

Remark. Formulae (3.12) were obtained under the assumption (3.1), which includes the statement that the shell 
is not loaded. It can be verified that the order of magnitude of the residual terms O(p) and O(p3) in relations (3.8) 
and (3.9) is preserved when 

Fy = O(p), pf = O(p3). j = 1,3 (4.10) 
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Together with relations (3.8) and (3.9), the terms in formulae (3.12), which have been explicitly written out, also 
remain unchanged. As a rule, estimates (4.10) are satisfied because stability loss in the linear approximation occurs 
at far smaller loads 

5: = O(p*), pif = O(p’). j = 1.3 (4.11) 

Estimates (4.10) are violated if the shell is acted upon by a very huge external pressure& - u2, which is identical 
on both sides of the shell. In this case, the quantity w, in (3.13) acquires a constant term and formulae (3.16) and 
(4.3) also change. This case is not considered here. 

5. THE PROBLEM OF COMPRESSION BY AN AXIAL FORCE 

Suppose that a shell is acted upon by an axial force P applied to its ends, that the edge of the shell 
= s1 is clamped in a radial direction and that the edge so = s2 can freely slide along a support plane, 

2hich is perpendicular to the axis of revolution. A stressed state, which satisfies estimates (1.7), then 
occurs in the neighbourhood of the edge SO = ~2 when P - E/a*. 

As the characteristic dimension R of the shell, we take R = r&2) and change to dimensionless variables 
(with the superscript “) using the formulae 

(~,Q,)=Eh~*{lf,Q;l, T, =Ehcr7& (M,,M2}=EhR~3(M;,A4;) 

Substitutions (5.1) are introduced in such a way that the dimensionless quantities are of the order 
of magnitude of unity in the neighbourhood of the edge SO = 32. 

We now transfer to the projections Vand U of the internal forces in the axial direction and the direction 
perpendicular to it, respectively 

r =UcosO+Vsin@ Qp =CJsinO-VcosO 

The degree sign is henceforth omitted. 
The system of equations in the unknowns 

V,U,E*,M1,8 

(5.2) 

(5.3) 

then takes the form 

(r&y = 0 
Poi3w’ = e2 +pv(Uc0~8+Vsin8)+p& +p3c2e’* 
p(~E2)‘=(i-p~E2)COSe-COSeo 

Poi$l 1’ = ro(l-~v~2)(Usine-vc0se)+pvM,c0se 
pe’ = M, + p(e; - V% 20) - 2p2c2&,e' 

The boundary conditions have the form 

e2=o, @=C&whenM,=O) whenso=sl 

U=Ml=O when so=s2 

The first of Eqs (5.4) gives 

v c =-, P=2nEhRp2C= 
r, 

(5.4) 

(5.5) 

(5.6) 

We will next seek the limiting value of the force P. 
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6. ASYMPTOTIC INTEGRATION OF SYSTEM (5.4) 

Far from the edges, the shell is deformed and both the zero-moment 

e=e,+o(ql*), M, =O(Cp3), cJ=s, E* = O(W) 
0 0 

and the principal deformations are concentrated in the neighbourhood of the edge so = s2. 
We write system (5.4) in vector form 

PX’ = Rx, so, C, ~1, x = IU, ~2, Ml, 0) 

(6.1) 

carry out a scale expansion E, = (so - S#L and seek its solution in the form 

x=xO(~)+pxl(~)+O(~*), c=co+pc’+o(p*) 

The accuracy of system (5.4) enables one to construct the two first terms of series (6.3). 
‘Ming account of the fact that 

(6.3) 

~o(~o)=i+~~~~y+o(~2)t Y=~(s,); 8,(~,)=y+CIEk,+0(~*k k, =woo2) 

and equating the coefficients of p” and p1 in system (5.4), we obtain in the zeroth approximation 

i’ = F” = F(xO, s2, Co, 0) (6.4) 

or (see also [4,5]) 

O” =E;, k; =cOse" -COST 

lif; =u”sineO-PcOseO, do=@ (6.5) 

(a dot denotes a derivative with respect to 5) and in the first approximation 

or 

(6.2) 

(6.6) 

(6.7) 

where 

gl = -trio cos y + UO(V cos e" - cos y) + VP sine0 + c,e$ + c2Mf 

82 = -& cos y - E; (v c0s e" + cos y ) + k,t sin y 

83 =-ve~(Uo~i~e0-COc0~eo)-c1~0~e0+~cO~0~e0~0~y+~~~v~0~e0-~~y~ (6.8) 

g4 = k, - v(sin8O - sin y) - 2c2E$@ 

The partial derivatives in expression (6.6) for g = (gr, g2, g3, g4} are calculated for the same values of 
the arguments as in (6.4). 

When SO < ~2, the solution of system (5.4) changes into the zero-moment solution (6.1) which gives 
the boundary conditions when 5 + - 00. 

uek9, eO+/fO 
sin y 2 I ~0. e”=y when 5+-- W) 
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=-- =M; =O, tt=k,c 

The boundary conditions (5.5) give 

UO=MP =O, U’= Mi =0 when t=O 

(6.10) 

(6.11) 

7. CALCULATION OF THE AXIAL FORCE 

System (6.5) has the integral [4] 

Ef-MY - 2U0(costP -cosy)-2CO(sin9’-siny)=O (7.1) 

in which the arbitrary constant is found by virtue of conditions (6.9). The “shooting” method is used 
in the numerical solution of the zeroth approximation boundary-value problem (6.5), (6.9), (6.11). The 
initial conditions 

are specified. 

U”:Mf =O, CI’=T, E~=T~ when 5~0 (7.2) 

It is assumed that the parameter z is specified, and r1 is found from relation (7.1) 

T1=1/2co( sin z -sin y) sign(lc / 2 - y) (7.3) 

The constant C! is selected from conditions (6.9) and, for these conditions to be satisfied, it is sufficient 
to require. that 

II 5 x0( )-x0(--)11+0 when 5+-m, ~x]]E(x~+...+x~)~ V-4) 

If relation (7.4) is satisfied, then Cs = Cc(z), x0 = x0@,, 2). The value of Cc, which corresponds to the 
limit point in the zeroth approximation, is found from the condition 

d@ldT = 0 (7.5) 

The value of C’ is found from the condition 

jfm(&E: -g&J* +g,e* -g,M:)ds=O (7.6) 

for the existence of a solution xi of system (6.7) which satisfies boundary conditions (6.10) and 
(6.11). Here, x* = {U*, E$, M!, e*} satisfies the system ti* = L(&x* and the null boundary conditions 
(x*(a) = u*(o) = W,(O) = 0). 

When conditions (7.4) are satisfied, we have 

x* = ax”/az 

which enables us to express C’ from (7.6) solely in terms of the zeroth approximation x0. 
After some reduction, we obtain 

(7-7) 

c’ = fo +&k, +fvv+ fiq +ha2 +f& 

where 

Al -h;j2, A =j3, fv,j2-5~+2js 

fi =(l-2v)3j2+ 3(1+:)(:-2v)3 j4 

(7.8) 
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2 
f2 =(I-2v)(l+2v2)j, + (l+v)(l-2;f;-4~+6v ) Jo 
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(7.9) 

f3 =(l-2v')j,- 3v(l+v)(l-2v+2v2) 
l-v j4 

ji=JjlJ,,, i=l,...,5 

and the values of Ji depend solely on the angle y and are determined in the course of the numerical 
integration of system (6.5) using the formulae 

Jo =az 
a cW(sin8’ -siny)&, 5, =cosyb & Jy3w~)2 -(&*M 

J2 =$~a(~p)3&,. J3 =-l-siny~~~(LI”(S)-~‘(-~))5rq 

J4 =$~‘se~(M~)2&, J5 =sinT-siny (7.10) 

The value of Cc and the coefficients in formulae (7.8) and (7.9) are presented below for different 
values of y 

X&&F= 5 10 20 30 45 60 70 80 85 
cuxlo4 -30 -121 -481 -1078 -2402 -422 1 -5704 -7439 -a460 

fox104 45 124 307 439 336 -323 -1070 -1868 -2069 
fiXl@ 4330 6104 8554 10362 12330 13637 14192 14741 15654 
f”X 10’ 131 366 1007 1751 2807 3430 3376 2718 2024 
jzxlo4 0 -6 -65 -260 -989 -2374 -3563 4562 4570 
j,XlOq 0 -1 -6 -24 -a5 -172 -211 -183 -119 

The case when y > x/2 reduces to the substitution y = rc - y and, moreover, it turns out that 

c”(7c-y)=co(o), C’(x-y)=-C’(y) (7.11) 

When y Q 1, the substitutions 

{UO,clO} = y{U*,cl*}, IMP,&;) = y%{M:&}, 5 = y-x5*, co = y2c* 

reduce system (6.4) to a form which does not contain y (see [5]) 

(7.12) 

r2u* 1 -=y3*2), g!g=,.,.-c* 
d5*2 
8*+1, v*+c* when 5*-+-m 

CJ*=O, M:=O when k*=O 

(7.13) 

When y Q 1, for the coefficients presented above we have the approximate equalities 

Ifo,fvl=rKIfo*,f~). h =+fk*$ ~j2~j4l=Y~Ii~J3 (7.14) 

The limit value of the quantity C* and the numerical values of the coefficients with an asterisk are 
C* = -03963, f. = 0.176&f; = 1.4602,f*, = 05092,j*, = -0.2652, j; = -0.0268. 

It follows from (7.14) that the contribution from the physically non-linear terms (with the factors cl 
and c2 in (5.4)) is reduced for shallow shells. 
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8. DISCUSSION OF THE RESULTS 

The problem of constructing a linear two-dimensional theory of thin shells starting from the three- 
dimensional theory of elasticity has been considered in many papers (see [3,6]). 

The approximate elasticity relations (4.3) for the axisymmetrical deformation of a non-linearly elastic 
shell of a revolution have been obtained here using the three-dimensional theory. Relations (1.7), which 
are based on an assumption regarding the order of magnitude of the strains qj = O(v), are the basis 
of the derivation. Relations (1.7) have been obtained previously [4,5] in the case of large supercritical 
displacements of shells of revolution. The strains ej = O(p) are relatively large since, for example, the 
subcritical strains accompanying the loss of stability of a cylindrical shell during axial compression are 
of a much lower order of magnitude r+ = 0(l.t2). Hence, if we wish to obtain the two-dimensional 
equations with an error of the order of p2, or of the order of h/R in the case of the strains being 
considered, it is necessary to take account of the non-linear dependence of the stresses on the strains. 

The non-linear elasticity relations (4.3), which have an error of the order of ~~ when q, = O(p), have 
been obtained above for the five-constant elastic material (2.7) under the assumption t h at q = O(E). 
In the case of strains of the same order of p, relations (4.3) also hold for an arbitrary non-linearly elastic 
material under the assumption that coefficients of the fourth and higher orders in expansion (2.7) of 
the elastic potential Q, in series in the invariants Ik do not substantially exceed E. 

In the case of large distortions (of the order of unity), no rigorous derivation of the elasticity relations 
for shells from the three-dimensional equations of the theory of elasticity can be found in the literature. 
Elasticity relations are available (see [7,g], etc.) which have been obtained using the Kirchhoff-Love 
hypothesis. In the case of small deformations (of the order of l.t), a comparison with formulae (4.3) 
reveals a difference in the non-linear terms. 

System (5.4), when cl = c2 = 0, has been investigated in [4, 5, 91 using the method of asymptotic 
integration. A problem of large axisymmetrical supercritical deformations of a shell by an external 
pressure has been considered in [4,5]. Here, the shape of a part of the median surface is close to the 
initial shape while the other part is close to that obtained by a mirror reflection from a plane perpen- 
dicular to the axis of revolution. A system, which is equivalent to (6.5) when Cc = 0, has been obtained 
in the zeroth approximation [4,5]. This system corresponds to a sharp decrease in the load at supercritical 
deformations. The relation between the load and the flexure has been found in [4] during a treatment 
of the first approximation and also in [5] by a variational method which uses the solution of the zeroth 
approximation as a coordinate function. The same results has been obtained previously [lo] by a 
geometric method, which turns out to be equivalent to the method of the asymptotic integration 
of system (5.4) when constructing the internal boundary layer. The dependence Cc(y), which is presented 
at the end of Section 7, was obtained in [9]. 

Systems of non-linear equations of the type of (4.1) for the axisymmetrical deformation of shells of 
revolution have been considered in many papers ([ll-131, etc). In [12,13] and a number of other papers, 
it is recommended “with the aim of refinement” that the forces and moments should be divided by the 
unit of length of the median surface after deformation. This is quite possible if the elasticity relations 
are changed simultaneously. If, however, the same elasticity relations are used, then, as was shown in 
[7], a system is obtained to which no elastic energy corresponds. In the case of the problem on the limit 
load under axial compression, which is being considered here, the equations from the above-mentioned 
papers enable one to determine the value of C? in (6.3) correctly and should give an erroneous value 
of the correction C’. It is interesting to note that the problem considered in [4,5] concerning supercritical 
deformations, associated with a mirror reflection, imposes higher than usual requirements on the initial 
system. Calculations showed that the use of the system from [12,13] does not allow one to determine 
even the leading term in the expression for the axial force correctly. 

The limit value of the force P has been found above. Bifurcation into a non-axisymmetrical form of 
equilibrium may precede the limit load. In particular, this will always be so in the case of shells which 
have segments with a negative Gaussian curvature, because, in the case of bifurcation P = O(Eh2pm) 
for such shells (see [14]). The solution of system (5.4) can be used to solve the bifurcation problem. 

This research was supported financially by the Russian Foundation for Basic Research (96-Ol-00411), 
the International Science Foundation and the Russian Government (NW5300). 
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